Lecture No. 12

Solution of C-D Equation

FE in space, FE in time, 1-D form of the equation:
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We’ll assume that

D = D(x) = spatially varying
V =V (x) = spatially varying
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Note that the form: —=+V — =D ——

is only valid if D = constant. When D = D(x) is

variable in space, it must be embedded into the derivative since the term represents the

gradient of flux.
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Fundamental Weak Weighted Residual Form
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Symmetrical Weak Weighted Residual Form

Integrating the diffusion term by parts leads to:
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« This requires at least C° functional continuity for u. Thus we must use Lagrange
interpolation.

« Let’s approximate over each element n and zero everywhere else:

#el #el #el (n)

uq
EZu(n) Z‘P(n)u(n) Z[(p(n)d)(n) . (n)

where
™ is a vector containing the interpolating polynomials

a(n)

IS a vector containing the elemental unknowns

« At this point we can represent any order Lagrange interpolation.

e Since we’ve selected Galerkin:
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su™ is an elemental vector containing arbitrary values



« Furthermore let’s approximate V(x) in the same way as u for element n:
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where 7™ is an elemental vector containing nodal known values of velocity. Note that it is
not necessary to select the same interpolation for V as for u. Lower or higher interpolation

could be selected. This is our approximation for V. For example we could have had used L,
interpolation (constant values of V over the element).

o Let’s approximate D(x) as constant over each element.

#el
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Thus D will vary from element to element but will be constant over a given element
(histogram).

Each function ¢™ = 0 outside of element n.

Substituting into our symmetrical weak weighted residual form:
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1. Since the interpolating functions ¢ are defined as non-zero only over the element n.
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2. Again since the components of ¢ ™ equal zero over all elements except n, we can sum

over the integral of each element domain.
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Thus we can write:
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 This is the usual form with which we go from the weighted residual formulation to the FE
formulation (i.e. from the weighted residual form we go directly to this form upon

substitution).

« Note that we can drop the (n) superscript from the interpolating functions vector ¢ ™ since

these functions are identical over each element domain 2™ (in local coordinates).

« The coefficients u™ are time varying but not spatially varying. The functions ¢ are

spatially but not time varying. Hence:
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Let’s further re-arrange things:
fﬂ'(tn)f(n) 62(11) — ?62(11)92,(;1) — SE(n)Tngﬂ'(tn)

Re-arranging the other terms in a similar manner we have:
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Factoring out 5u™" and grouping integrations:
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Let:

M™ = [fﬂ(n) ngdxl = elemental mass or geometric matrix
AM = :fﬂ(n) QTQK(”)gxdxl = elemental convection matrix

B™ = _D(”)f w DX gbxdx] = elemental diffusion matrix

Pt = _CTQTL = normal flux load vector
- N

Hence:
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Summing over all elements and taking into account the required functional continuity

constraints leads to a global system of equations:
Su'{Mu, +(A+B)u—P}=0
M = global mass matrix (assembled from local mass matrices)

A = global convection matrix

Ise

= global diffusion matrix

la~)
I

= global normal flux load vector



Recall that su” was a vector consisting of an arbitrary set of coefficients §u;. Therefore in

order to allow this equation to be valid for any arbitrary vector 6u we must have:

Mu;+(A+B)u—P=0

=

Mu; +(A+B)u=P

o All the global matrices are formed from the local matrices.

Development of Elemental Matrices

The equations for the elemental matrices as they now stand are valid for any order Lagrange

interpolation. We also note that:

1. The equations require C, continuity. This satisfied the minimum necessary requirements.
2. We have assumed that u and V vary with the same type and degree interpolating functions.
This is not necessary (it’s problem dependent).

3. We could also have formulated the problem using Hermite’s.



Let’s use 2" order Lagrange functions (quadratic)

Element has 3 nodes:
3 elemental interpolating functions
3 unknown coefficients per element. These coefficients equal the dependent variable at

the nodes.

u{™ ul™ ul™  for element n

Hence:
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Recall that the transformation from global to local coordinates was:
§=—1+2(x—x)/(%+1 — x;)

vice-versa we have;:
L,
x =xj+ (xj+1 —xj)(f +1)/2 = x; +7(E + 1)

where L,, = length of element n.

Let’s evaluate the elemental matrix M ()

M® = | ¢"pdx



However we wish to work in local coordinates and therefore we transform to the & coordinate
system

L

. dx =2d§

o limits for each element become —1 < ¢ < +1

Hence we may evaluate M ™ as:
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« Note that the matrix is symmetrical

Evaluating the integrals and evaluating the integration limits:
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Therefore for quadratic interpolation, each elemental matrix is given by the given expression

and only L,, need be computed from element to element.



Evaluate elemental convection matrix 4™

A = jfoZ(n)f,xdx
o

For local coordinates:

limits of integration
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Furthermore we note that:
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Thus:
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Taking the product of these

[ —0.3333V,"™ — 0.20001,™ + 0.03333V,"”  0.4000%,"™ + 0.2666V,
A®™ = —0.20001," - 0.53331,™ +0.06667V,"Y  0.26666V," — 0.2666V,"
4+0.03333V,"™ + 0.06667V,™ + 0.133331V,"™  —0.2666V,"™ — 0.40001,""

—0.06667V,"™ — 0.06667V,™ — 0.16667V,"™]
~0.06667V," + 0.53333,"™ + 0.20001,"
0.10000V,"™ + 0.26667V,"™ + 0.133331,™ |

« The elemental convection matrix depends only on the elemental nodal velocities. A

therefore varies from element to element if V™ varies. We must reevaluate the elemental

matrix for each element in the above form.



« Note that this matrix is not symmetric. This is not expected since the convection part of the
operator is not self adjoint.

« Other matrices are treated similarly.

« In general the elemental coefficient matrices depend on geometrical properties of the
element and its prescribed material properties (e.g. in this case the nodal velocities and

elemental diffusion values).



Notes
1. Natural b.c. treatment such that the normal flux includes both a diffusive and convective

component. Recall that the natural b.c. previously developed only included the diffusive
flux component. However we can transform our operator to a symmetrical point such that

the natural b.c. includes both a diffusive and convective flux.
» Consider u; + Vu, = (Duy)
We note that from the 1-D continuity equation that VV,, = 0. Hence:
Vu) y =Veu+Vu, =Vu,
Therefore we can substitute Vu , and thus the C-D equation can be written as:

u, + (Vu) , = (Du’x),x



o Let’s perform a halfway integration from
(L(u),éu) = (L*(6u), u) + boundary terms

j (u,t + (Vu) , — (Du,x)’x) dud?
Q

= j (we6u — Vu(u) x + Du,(5u) ,)d2 + [—Du, + Vul|Sul,
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« The essential boundary is represented by wu.

» The natural boundary is represented by (—Du,, + Vu).

« Since we have integrated both the diffusive and the convective terms in the first part of the
Integration by parts procedure, we now have a different natural b.c. This is associated with
the non-self-adjoint nature of the operator.

g=Vu+g®
where

D e __pou
q- = diffusive flux = Dax

V'u = convective flux



2. 2-D C-D equation:
ur+Vu, +yu, = (Dyxtty + nyu,y)'x + (Dyyuy + Dyyu'y)’y
Thus diffusion (or dispersion) coefficients now form a 2x2 tensor. Again the convective

terms may be rewritten as:
V) 5 + () |, = Vet + By +u(Vex +15,)
However from continuity
Vix+Vyy =0
Thus:
u; + (Vu) , + (Vyu)y = (Dyxtty + nyu,y)’x + (Dyyuy + Dyyu,y)’y

« The essential b.c. will be u|, = 1u|,
o The natural b.c. will be q|, = qlp,

wWhere g, = apqy + Anyq,



It is noted that g,, can represent 2 different natural b.c.’s:

(i) qx = Vou +qy

qy = Vyu+aqy
where
ou
qg = xxa
ou
D _ -
qy YY gy
In this case g, and g, include both convective and diffusive flux.
(i1) Ax = qx
9y = dy

In this case normal flux only represents diffusive flux.



